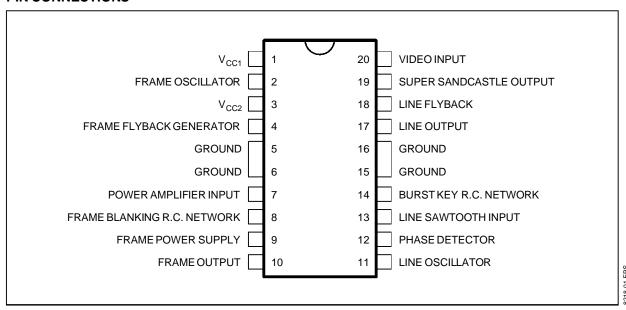


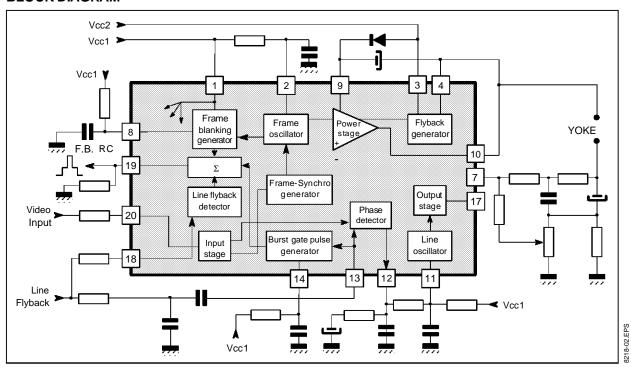

# **TDA8218**

## HORIZONTAL AND VERTICAL DEFLECTION CIRCUIT


- DIRECT FRAME-YOKE DRIVE (± 1A)
- COMPOSITE VIDEO SIGNAL INPUT CAPA-BILITY
- FRAME OUTPUT PROTECTION AGAINST SHORT CIRCUITS
- PLL
- SUPER SANDCASTLE OUTPUT
- VERY FEW EXTERNAL COMPONENTS
- VERYLOW COST POWER PACKAGE
- STABLE FRAME BLANKING PULSE, GENERATED BY EXTERNAL RC, FOR COMPATIBILITY WITH TEA 5640



#### DESCRIPTION


The TDA8218 is an horizontal and vertical deflection circuit with super sandcastle generator. Used with automatic PAL/SECAM decoder TEA5640, this IC permits a complete low-cost solution for PAL/SECAM applications.

#### **PIN CONNECTIONS**



September 1993 1/9

## **BLOCK DIAGRAM**



## **ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter Value                       |              |          |
|-------------------|---------------------------------------|--------------|----------|
| V <sub>CC</sub> 1 | Supply Voltage                        | 30           | <b>V</b> |
| V <sub>CC</sub> 2 | Flyback Generator Supply Voltage      | 35           | <b>V</b> |
| V9                | Frame Power Supply Voltage            | 60           | V        |
| I10 <sub>NR</sub> | Frame Output Current (non repetitive) | ± 1.5        | Α        |
| l10               | Frame Output Current (continuous)     | ± 1          | Α        |
| V17               | Line Output Voltage (external)        | 60           | V        |
| I <sub>P</sub> 17 | Line Output Peak Current              | 0.8          | Α        |
| I <sub>C</sub> 17 | Line Output Continuous Current        | 0.4          | Α        |
| T <sub>STG</sub>  | Storage Temperature                   | -40 to + 150 | °C       |
| TJ                | Max Operating Junction Temperature    | + 150        | °C       |
| T <sub>AMB</sub>  | Operating Ambient Temperature         | 0 to 70      | °C       |

## **THERMAL DATA**

| Symbol               | Parameter Value                                                                                   |     |      |  |
|----------------------|---------------------------------------------------------------------------------------------------|-----|------|--|
| R <sub>TH(j-c)</sub> | Max Junction-case Thermal Resistance                                                              | 10  | °C/W |  |
| $R_{TH(j-a)}$        | Typical Junction-ambient Thermal Resistance (Soldered on a 35µm thick 45cm² PC Board copper area) | 40  | °C/W |  |
| TJ                   | Max Recommended Junction Temperature                                                              | 120 | °C   |  |

8218-02.TBL

8218-01.TBL



## **ELECTRICAL CHARACTERISTICS**

 $V_{CC1} = 10 \text{ V}, T_{AMB} = 25 \,^{\circ}\text{C}$  (unless otherwise specified)

| Symbol                           | Parameter                                                                                   | Min.  | Тур.  | Max.  | Unit  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|--|--|
| SUPPLY (F                        | Pin 1)                                                                                      |       |       |       | _     |  |  |
| I <sub>CC1</sub>                 | Supply Current                                                                              |       | 15    | 22    | mA    |  |  |
| V <sub>CC1</sub>                 | Supply Voltage                                                                              | 9     | 10    | 10.5  | V     |  |  |
| VIDEO INPUT (Pin 20)             |                                                                                             |       |       |       |       |  |  |
| V20                              | Reference Voltage (I20 = -1μA)                                                              | 1.4   | 1.75  | 2     | V     |  |  |
| MWF                              | Minimum Width of Frame Pulse (when synchronized with TTL signal)                            | 50    |       |       | μs    |  |  |
| LINE OSCILLATOR (Pin 11)         |                                                                                             |       |       |       |       |  |  |
| LT11                             | Low Threshold Voltage                                                                       | 2.8   | 3.2   | 3.6   | V     |  |  |
| HT11                             | High Threshold Voltage                                                                      | 5.4   | 6.6   | 7.8   | V     |  |  |
| BI11                             | Bias Current                                                                                |       | 100   |       | nA    |  |  |
| DR11                             | Discharge Impedance                                                                         | 1.0   | 1.4   | 1.8   | kΩ    |  |  |
| FLP1                             | Free Running Line Period (R = $34.9k\Omega$ Tied to $V_{CC1}$ , C = $2.2nF$ Tied to Ground) | 62    | 64    | 66    | μs    |  |  |
| OT11                             | Oscillator Threshold for Line Output<br>Pulse Triggering                                    |       | 4.6   |       | V     |  |  |
| $\frac{\Delta F}{\Delta \theta}$ | Horizontal Frequency Drift with Temperature (see application)                               |       | 2     |       | Hz/°C |  |  |
| LINE OUT                         | PUT (Pin 17)                                                                                |       |       |       | _     |  |  |
| LV17                             | Saturation Voltage (I <sub>17</sub> = 200mA)                                                |       | 1.1   | 1.6   | V     |  |  |
| OPW                              | Output Pulse width (line period = 64µs)                                                     | 26    | 28    | 30    | μs    |  |  |
| LINE SAW                         | TOOTH INPUT (Pin 13)                                                                        |       |       |       |       |  |  |
| V13                              | Bias Voltage                                                                                | 1.8   | 2.4   | 3.2   | V     |  |  |
| Z13                              | Input Impedance                                                                             | 4.5   | 5.8   | 8     | kΩ    |  |  |
| PHASE DE                         | TECTOR (Pin 12)                                                                             |       | '     | •     |       |  |  |
| l12                              | Output Current During Synchro Pulse                                                         | 250   | 350   | 500   | μΑ    |  |  |
| RI12                             | Current Ratio (positive/negative)                                                           | 0.95  | 1     | 1.05  |       |  |  |
| LI12                             | Leakage Current                                                                             | -2    |       | +2    | μА    |  |  |
| CV12                             | Control RangeVoltage                                                                        | 2.60  |       | 7.10  | V     |  |  |
| FRAME BL                         | ANKING GENERATOR (Pin 8)                                                                    |       |       |       |       |  |  |
|                                  | External R.C. Network (Typical values : $R = 100k\Omega$ , $C = 22nF$ )                     |       |       |       |       |  |  |
| T <sub>fb</sub>                  | Blanking Time (Pln 19, T <sub>fb</sub> = K8 .R.C.)                                          |       | 1.35  |       | ms    |  |  |
| K8                               | Time Blanking Coefficient                                                                   | 0.588 | 0.613 | 0.644 |       |  |  |
| I <sub>O8</sub>                  | Output Current during the Frame Blanking : $V_8 = 2V$                                       |       | - 0.2 | 1     | μΑ    |  |  |
| I <sub>I8</sub>                  | Input Current after the Frame Blanking : $V_8 = 7V$                                         | 300   | 450   | 600   | μΑ    |  |  |
| FRAME OS                         | SCILLATOR (Pin 2)                                                                           |       |       |       |       |  |  |
| LT2                              | Low Threshold Voltage                                                                       | 1.6   | 2.0   | 2.3   | V     |  |  |
| HT2                              | High Threshold Voltage                                                                      | 2.6   | 3.1   | 3.6   | V     |  |  |
| DIF2                             | LT2 - HT2                                                                                   |       | 1.0   |       | V     |  |  |
| BI2                              | Bias Current                                                                                |       | 30    |       | nA    |  |  |
| DR2                              | Discharge Impedance                                                                         | 300   | 470   | 700   | Ω     |  |  |
| FFP1                             | Free Running Frame Period (R = $866k\Omega$ Tied to $V_{CC}1$ , C = $220nF$ Tied to Ground) | 20.5  | 23    | 25    | ms    |  |  |
| MFP                              | Minimum Frame Period (I20 = $-100\mu$ A) with the Same RC                                   |       | 12.8  |       | ms    |  |  |
| FPR                              | Frame Period Ratio = FFP/MFP                                                                | 1.7   | 1.8   | 1.9   |       |  |  |

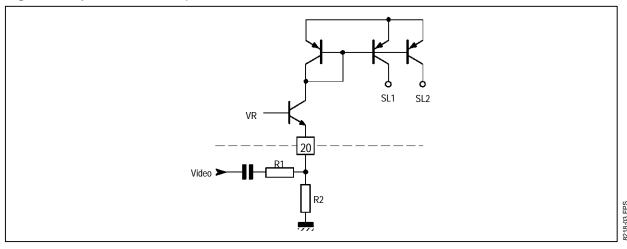
## **ELECTRICAL CHARACTERISTICS**

V<sub>CC1</sub> = 10 V, T<sub>AMB</sub> = 25 °C (unless otherwise specified)

| Symbol                           | Parameter                                                                                  | Min. | Тур.               | Max.       | Unit  |  |
|----------------------------------|--------------------------------------------------------------------------------------------|------|--------------------|------------|-------|--|
| FRAME OS                         | CILLATOR (Pin 2) (continued)                                                               |      |                    |            |       |  |
| FG                               | Frame Saw-tooth Gain Between Pin 1 and non Inverting Input of the Frame Amplifier          |      | -0.4               |            |       |  |
| $\frac{\Delta F}{\Delta \theta}$ | Vertical Frequency Drift with Temperature (see application)                                |      | 4.10 <sup>-3</sup> |            | Hz/°C |  |
| -                                | WER SUPPLY (Pin 9)                                                                         |      | I                  | 1          | 1     |  |
| V9                               | Operating Voltage (with flyback Generator)                                                 | 10   |                    | 58         | Ιv    |  |
| 19                               | Supply Current (V9 = 30V)                                                                  |      | 9                  | 15         | mA    |  |
| FLYBACK G                        | GENERATOR SUPPLY (Pin 3)                                                                   |      | I                  |            | 1     |  |
| V <sub>CC</sub> 2                | Operating Voltage                                                                          | 10   |                    | 30         | V     |  |
|                                  | TPUT (Pin 10)                                                                              | 1    |                    |            |       |  |
|                                  | Saturation Voltage to Ground (V9 = 30V)                                                    |      |                    |            |       |  |
| LV10A                            | 110 = 0.1A                                                                                 |      | 0.06               | 0.6        | V     |  |
| LV10B                            | I10 = 1A                                                                                   |      | 0.37               | 1          | V     |  |
|                                  | Saturation Voltage to V9 (V9 = 30V)                                                        |      |                    |            |       |  |
| HV10A                            | I10 = -0.1A                                                                                |      | 1.3                | 1.6        | V     |  |
| HV10B                            | I10 = -1A                                                                                  |      | 1.7                | 2.4        | V     |  |
|                                  | Saturation Voltage to V9 in Flyback Mode (V10 > V9)                                        |      |                    |            |       |  |
| FV10A                            | I10 = 0.1A                                                                                 |      | 1.6                | 2.1        | V     |  |
| FV10B                            | I10 = 1A                                                                                   |      | 2.5                | 4.5        | V     |  |
| FLYBACK G                        | SENERATOR (Pin 3 and Pin 4)                                                                |      |                    |            |       |  |
|                                  | Flyback Transistor on (output = high state), V <sub>CC2</sub> = 30V, V4/3 with             |      |                    |            |       |  |
| F2DA<br>F2DB                     | $I_{4 \to 3} = 0.1A$ $I_{4 \to 3} = 1A$                                                    |      | 1.5<br>3.0         | 2.1<br>4.5 | V     |  |
|                                  | Flyback Transistor on (output = high state), V <sub>CC2</sub> = 30V, V3/4 with             | 4    | -                  |            |       |  |
| FSVA<br>FSVB                     | $ \begin{array}{l} I_3 \rightarrow 4 = 0.1A \\ I_3 \rightarrow 4 = 1A \end{array} $        |      | 0.8<br>2.2         | 1.1<br>4.5 | V     |  |
|                                  | Flyback Transistor off (output = V9 - 8V), V9 - V <sub>CC2</sub> = 30V                     |      |                    |            | 1     |  |
| FCI                              | Leakage Current Pin 3                                                                      |      |                    | 170        | μА    |  |
| SUPER SAI                        | NDCASTLE OUTPUT (Pin 19)                                                                   |      |                    | •          |       |  |
|                                  | Output Voltages (R load = $2.2k\Omega$ )                                                   |      |                    |            |       |  |
| SANDT2                           | Frame blanking pulse level                                                                 | 2    | 2.5                | 3          | V     |  |
| SANDL2                           | Line blanking pulse level                                                                  | 4    | 4.5                | 5          | V     |  |
| BG2                              | Burst key pulse level                                                                      | 8    | 9                  |            | V     |  |
|                                  | Pulses width and timing                                                                    |      |                    |            |       |  |
| SC3                              | Delay between middle of sync pulse and leading edge of burst key pulse                     | 2.3  | 2.7                | 3.1        | μs    |  |
| SC2                              | Duration of burst key pulse Vertical blanking pulse width : Defined by external R.C. Pin 8 |      |                    |            |       |  |
| LINE FLYBA                       | ACK INPUT (Pin 18)                                                                         | •    |                    | •          | •     |  |
|                                  | Switching level                                                                            |      | 2                  |            | V     |  |
|                                  | Maximum imput current at V <sub>PEAK</sub> = 800V                                          |      | 8                  |            | mA    |  |
|                                  | Limiting voltage at maximum current                                                        |      | 4.3                |            | V     |  |
| τ                                | RC network time constant (Note 1) for the burst key pulse                                  |      | 6                  |            | μS    |  |

Note: 1. An RC network is connected to this input. Typical value for the resistor is 27kΩ and 220pF for the capacitor. A different time constant for RC changes the delay between the middle of the line synchro pulse and the leading edge of the burst key pulse but also the duration of the burst key pulse.




#### **GENERAL DESCRIPTION**

The TDA8218 performs all the video and power functions required to provide signals for the line driver and frame yoke.

#### It contains:

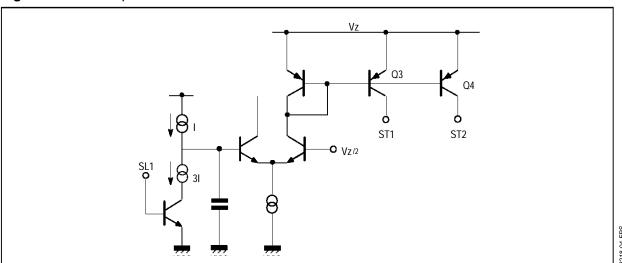
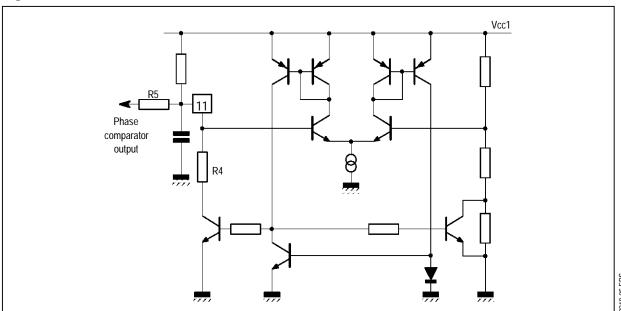

- · A synchronization separator
- An integrated frame separator without external components
- · A saw-tooth generator for the frame
- A power amplifier for direct drive of frame yoke (short circuit protected)
- · An open collector output for the line driver
- A line phase detector and a voltage control oscillator
- A super sandcastle generator.

Figure 1: Synchronization Separator Circuit



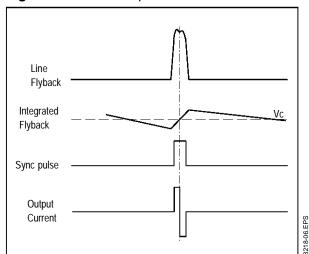
The slice level of sync-separation is fixed by value of the external resistors R1 and R2.  $V_R$  is an internally fixed voltage.


Figure 2: Frame Separator



The sync-pulse allows the discharge of the capacitor by a 2 x I current. A line sync-pulse is not able to discharge the capacitor under  $V_Z/2$ . A frame

sync-pulse permits the complete discharge of the capacitor, so during the frame sync-pulse  $Q_3$  and  $Q_4$  provide current for the other parts of the circuit.


Figure 3: Line Oscillator



The oscillator thresholds are internally fixed by resistors. The discharge of the capacitor depends on the internal resistor R4. The control voltage is applied on resistor R5.

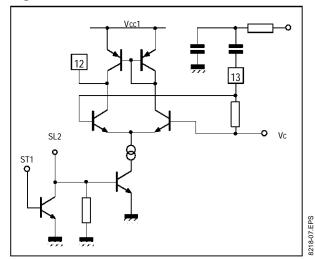

The sync-pulse drives the current in the comparator. The line flyback integrated by the external net work gives on pin 13 a saw tooth, the DC offset of this saw tooth is fixed by VC. The comparator

Figure 4 : Phase Comparator



output provides a positive current for the part of the signal on pin 13 greater than to VC and a negative current for the other part. When the line flyback and the video signal are synchronized, the output of the comparator is an alternatively negative and positive current. The frame sync-pulse inhibits the comparator to prevent frequency drift of the line oscillator on the frame beginning.

Figure 5



6/9

### Line output (Pin 17)

It is an open-collector output. The output positive pulse time is 28µs for a 64µs period. The oscillator thresholds are internally fixed by resistors. The oscillator is synchronized during the last half free run period. The input current during the charge of the capacitor is less than 100nA.

## Frame output amplifier

This amplifier is able to drive directly the frame yoke. Its output is short circuit and overload protected; it contains also a thermal protection.

The line flyback detection is provided by a comparator which compares the input line flyback pulse to an internal reference. The burst gate pulse position is fixed by the external RC network (pin 14). It is referenced to the middle of the line flyback.

The frame blanking generator is a monostable with external R.C. The start blanking pulse is triggered by the falling edge of the frame saw-tooth (Pin 2). The reset is provided by a comparator which compares the capacitor voltage during its charge to an internal threshold fixed by resistors.

The frame blanking time is defined by:

$$T_{fb} = 0.613 \cdot R.C.$$

This pulse is available on Super Sand Castle output (Pin 19).

Remark: For compatability with TEA5640, frame blanking time must be larger than 1.15ms with centered value @ 1.35ms (R =  $100k\Omega \pm 1\%$ ,  $C = 22nF \pm 5\%$ 

Figure 6: Frame Oscillator

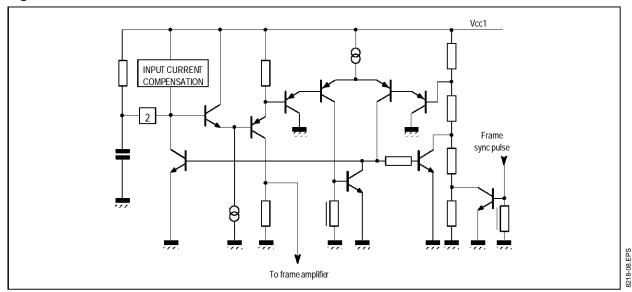
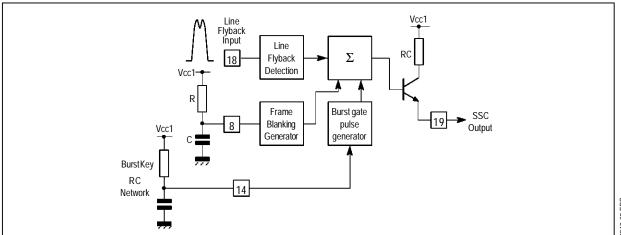
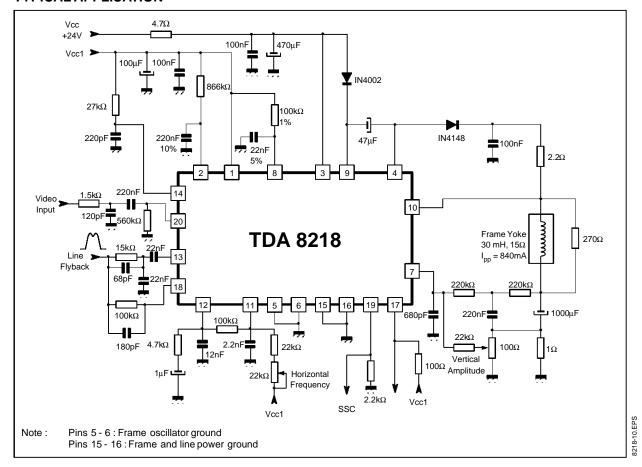
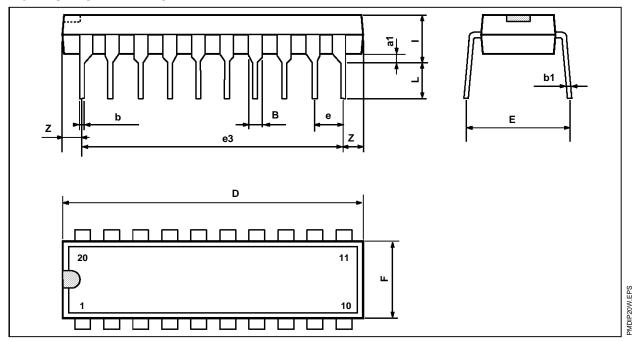





Figure 7: Super sandcastle generator




3218-09.EPS

## TYPICAL APPLICATION



#### PACKAGE MECHANICAL DATA

20 PINS - POWER DIP 16 + 2+ 2



| Dimensions |      | Millimeters |      |       | Inches |       |
|------------|------|-------------|------|-------|--------|-------|
|            | Min. | Тур.        | Max. | Min.  | Тур.   | Max.  |
| a1         | 0.51 |             |      | 0.020 |        |       |
| В          | 0.85 |             | 1.4  | 0.033 |        | 0.055 |
| b          |      | 0.5         |      |       | 0.020  |       |
| b1         | 0.38 |             | 0.5  | 0.015 |        | 0.020 |
| D          |      |             | 24.8 |       |        | 0.976 |
| E          |      | 8.8         |      |       | 0.346  |       |
| е          |      | 2.54        |      |       | 0.100  |       |
| e3         |      | 22.86       |      |       | 0.900  |       |
| F          |      |             | 7.1  |       |        | 0.280 |
| i          |      |             | 5.1  |       |        | 0.201 |
| L          |      | 3.3         |      |       | 0.130  |       |
| Z          |      |             | 1.27 |       |        | 0.050 |

DIP20PW.TBL

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

#### © 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of  $I^2C$  Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  $I^2C$  Patent. Rights to use these components in a  $I^2C$  system, is granted provided that the system conforms to the  $I^2C$  Standard Specifications as defined by Philips.

#### SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.